Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38155579

RESUMO

The evolution of gonochorism from hermaphroditism is linked with the formation of sex chromosomes, as well as the evolution of sex-biased and sex-specific gene expression to allow both sexes to reach their fitness optimum. There is evidence that sexual selection drives the evolution of male-biased gene expression in particular. However, previous research in this area in animals comes from either theoretical models or comparative studies of already old sex chromosomes. We therefore investigated changes in gene expression under 3 different selection regimes for the simultaneous hermaphrodite Macrostomum lignano subjected to sex-limited experimental evolution (i.e. selection for fitness via eggs, sperm, or a control regime allowing both). After 21 and 22 generations of selection for male-specific or female-specific fitness, we characterized changes in whole-organism gene expression. We found that female-selected lines had changed the most in their gene expression. Although annotation for this species is limited, gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggest that metabolic changes (e.g. biosynthesis of amino acids and carbon metabolism) are an important adaptive component. As predicted, we found that the expression of genes previously identified as testis-biased candidates tended to be downregulated in the female-selected lines. We did not find any significant expression differences for previously identified candidates of other sex-specific organs, but this may simply reflect that few transcripts have been characterized in this way. In conclusion, our experiment suggests that changes in testis-biased gene expression are important in the early evolution of sex chromosomes and gonochorism.


Assuntos
Perfilação da Expressão Gênica , Sêmen , Animais , Masculino , Feminino , Transcriptoma , Testículo , Espermatozoides , Evolução Molecular
2.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979163

RESUMO

Whole genome duplication (WGD) is an evolutionary event resulting in a redundancy of genetic material. Different mechanisms of WGD, allo- or autopolyploidization, lead to distinct evolutionary trajectories of newly formed polyploids. Genome studies on such species are important for understanding the early stages of genome evolution. However, assembling neopolyploid is a challenging task due to the presence of 2 homologous (or homeologous) chromosome sets and therefore the existence of the extended paralogous regions in its genome. Post-WGD evolution of polyploids includes cytogenetic diploidization leading to the formation of species, whose polyploid origin might be hidden by disomic inheritance. Earlier we uncovered the hidden polyploid origin of the free-living flatworms of the genus Macrostomum (Macrostomum lignano, M. janickei, and M. mirumnovem). Cytogenetic diploidization in these species is accompanied by intensive chromosomal rearrangements including chromosomes fusions. In this study, we unravel the M. lignano genome organization through generation and sequencing of 2 sublines of the commonly used inbred line of M. lignano (called DV1) differing only in a copy number of the largest chromosome (MLI1). Using nontrivial assembly free comparative analysis of their genomes, we deciphered DNA sequences belonging to MLI1 and validated them by sequencing the pool of microdissected MLI1. Here we presented the uncommon mechanism of genome rediplodization of M. lignano, which consists of (i) presence of 3 subgenomes, which emerged via formation of large fused chromosomes and its variants, and (ii) sustaining their heterozygosity through inter- and intrachromosomal rearrangements.


Assuntos
Platelmintos , Animais , Platelmintos/genética , Cromossomos/genética , Genoma Helmíntico , Poliploidia , Sequência de Bases
3.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948412

RESUMO

B chromosomes (Bs) or supernumerary chromosomes are extra chromosomes in the species karyotype that can vary in its copy number. Bs are widespread in eukaryotes. Usually, the Bs of specimens collected from natural populations are the object of the B chromosome studies. We applied another approach analyzing the Bs in animals maintained under the laboratory conditions as lines and cultures. In this study, three species of the Macrostomum genus that underwent a recent whole-genome duplication (WGD) were involved. In laboratory lines of M. lignano and M. janickei, the frequency of Bs was less than 1%, while in the laboratory culture of M. mirumnovem, it was nearer 30%. Their number in specimens of the culture varied from 1 to 14. Mosaicism on Bs was discovered in parts of these animals. We analyzed the distribution of Bs among the worms of the laboratory cultures during long-term cultivation, the transmission rates of Bs in the progeny obtained from crosses of worms with different numbers of Bs, and from self-fertilized isolated worms. The DNA content of the Bs in M. mirumnovem was analyzed with the chromosomal in situ suppression (CISS) hybridization of microdissected DNA probes derived from A chromosomes (As). Bs mainly consisted of repetitive DNA. The cytogenetic analysis also revealed the divergence and high variation in large metacentric chromosomes (LMs) containing numerous regions enriched for repeats. The possible mechanisms of the appearance and evolution of Bs and LMs in species of the Macrostomum genus were also discussed.


Assuntos
Platelmintos/genética , Animais , Cromossomos/genética , Sondas de DNA/genética , DNA de Helmintos/genética , Hibridização In Situ , Mosaicismo
4.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573341

RESUMO

We analyzed the synapsis and recombination between Z and W chromosomes in the oocytes of nine neognath species: domestic chicken Gallus gallus domesticus, grey goose Anser anser, black tern Chlidonias niger, common tern Sterna hirundo, pale martin Riparia diluta, barn swallow Hirundo rustica, European pied flycatcher Ficedula hypoleuca, great tit Parus major and white wagtail Motacilla alba using immunolocalization of SYCP3, the main protein of the lateral elements of the synaptonemal complex, and MLH1, the mismatch repair protein marking mature recombination nodules. In all species examined, homologous synapsis occurs in a short region of variable size at the ends of Z and W chromosomes, where a single recombination nodule is located. The remaining parts of the sex chromosomes undergo synaptic adjustment and synapse non-homologously. In 25% of ZW bivalents of white wagtail, synapsis and recombination also occur at the secondary pairing region, which probably resulted from autosome-sex chromosome translocation. Using FISH with a paint probe specific to the germline-restricted chromosome (GRC) of the pale martin on the oocytes of the pale martin, barn swallow and great tit, we showed that both maternally inherited songbird chromosomes (GRC and W) share common sequences.


Assuntos
Aves/genética , Pareamento Cromossômico/fisiologia , Recombinação Genética , Cromossomos Sexuais , Animais , Galinhas/genética , Feminino , Hibridização in Situ Fluorescente , Proteína 1 Homóloga a MutL/genética , Oócitos/fisiologia , Estágio Paquíteno/genética , Passeriformes/genética
5.
Evodevo ; 11: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158530

RESUMO

Macrostomum lignano is a free-living flatworm that is emerging as an attractive experimental animal for research on a broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. M. lignano can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as M. lignano can survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing simultaneous hermaphrodite that reproduces in a sexual manner, M. lignano is also used to study sexual selection and other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed characterization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-release glands and genome evolution due to its recent whole-genome duplication.

6.
Sci Rep ; 10(1): 1058, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974427

RESUMO

All songbirds studied to date have an additional Germline Restricted Chromosome (GRC), which is not present in somatic cells. GRCs show a wide variation in genetic content and little homology between species. To check how this divergence affected the meiotic behavior of the GRC, we examined synapsis, recombination and copy number variation for GRCs in the closely related sand and pale martins (Riparia riparia and R. diluta) in comparison with distantly related estrildid finches. Using immunolocalization of meiotic proteins and FISH with GRC-specific DNA probes, we found a striking similarity in the meiotic behavior of GRCs between martins and estrildid finches despite the millions of years of independent evolution. GRCs are usually present in two copies in female and in one copy in male pachytene cells. However, we detected polymorphism in female and mosaicism in male martins for the number of GRCs. In martin and zebra finch females, two GRCs synapse along their whole length, but recombine predominately at their ends. We suggest that the shared features of the meiotic behavior of GRCs have been supported by natural selection in favor of a preferential segregation of GRCs to the eggs.


Assuntos
Pareamento Cromossômico , Variações do Número de Cópias de DNA , Tentilhões/genética , Recombinação Genética , Cromossomos Sexuais/genética , Andorinhas/genética , Animais , Feminino , Masculino
7.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968653

RESUMO

The genus Macrostomum represents a diverse group of rhabditophoran flatworms with >200 species occurring around the world. Earlier we uncovered karyotype instability linked to hidden polyploidy in both M. lignano (2n = 8) and its sibling species M. janickei (2n = 10), prompting interest in the karyotype organization of close relatives. In this study, we investigated chromosome organization in two recently described and closely related Macrostomum species, M. mirumnovem and M. cliftonensis, and explored karyotype instability in laboratory lines and cultures of M. lignano (DV1/10, 2n = 10) and M. janickei in more detail. We revealed that three of the four studied species are characterized by karyotype instability, while M. cliftonensis showed a stable 2n = 6 karyotype. Next, we performed comparative cytogenetics of these species using fluorescent in situ hybridization (FISH) with a set of DNA probes (including microdissected DNA probes generated from M. lignano chromosomes, rDNA, and telomeric DNA). To explore the chromosome organization of the unusual 2n = 9 karyotype discovered in M. mirumnovem, we then generated chromosome-specific DNA probes for all chromosomes of this species. Similar to M. lignano and M. janickei, our findings suggest that M. mirumnovem arose via whole genome duplication (WGD) followed by considerable chromosome reshuffling. We discuss possible evolutionary scenarios for the emergence and reorganization of the karyotypes of these Macrostomum species and consider their suitability as promising animal models for studying the mechanisms and regularities of karyotype and genome evolution after a recent WGD.


Assuntos
Genoma Helmíntico/genética , Platelmintos/genética , Aneuploidia , Animais , Evolução Biológica , Duplicação Gênica , Hibridização in Situ Fluorescente , Cariótipo , Poliploidia
8.
Proc Natl Acad Sci U S A ; 116(24): 11845-11850, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31036668

RESUMO

An unusual supernumerary chromosome has been reported for two related avian species, the zebra and Bengalese finches. This large, germline-restricted chromosome (GRC) is eliminated from somatic cells and spermatids and transmitted via oocytes only. Its origin, distribution among avian lineages, and function were mostly unknown so far. Using immunolocalization of key meiotic proteins, we found that GRCs of varying size and genetic content are present in all 16 songbird species investigated and absent from germline genomes of all eight examined bird species from other avian orders. Results of fluorescent in situ hybridization of microdissected GRC probes and their sequencing indicate that GRCs show little homology between songbird species and contain a variety of repetitive elements and unique sequences with paralogs in the somatic genome. Our data suggest that the GRC evolved in the common ancestor of all songbirds and underwent significant changes in the extant descendant lineages.


Assuntos
Cromossomos/genética , Células Germinativas/fisiologia , Aves Canoras/genética , Animais , Feminino , Genoma/genética , Genômica/métodos , Hibridização in Situ Fluorescente/métodos , Masculino , Oócitos/fisiologia , Sequências Repetitivas de Ácido Nucleico/genética
9.
Genes (Basel) ; 8(11)2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084138

RESUMO

The free-living flatworm Macrostomum lignano is a hidden tetraploid. Its genome was formed by a recent whole genome duplication followed by chromosome fusions. Its karyotype (2n = 8) consists of a pair of large chromosomes (MLI1), which contain regions of all other chromosomes, and three pairs of small metacentric chromosomes. Comparison of MLI1 with metacentrics was performed by painting with microdissected DNA probes and fluorescent in situ hybridization of unique DNA fragments. Regions of MLI1 homologous to small metacentrics appeared to be contiguous. Besides the loss of DNA repeat clusters (pericentromeric and telomeric repeats and the 5S rDNA cluster) from MLI1, the difference between small metacentrics MLI2 and MLI4 and regions homologous to them in MLI1 were revealed. Abnormal karyotypes found in the inbred DV1/10 subline were analyzed, and structurally rearranged chromosomes were described with the painting technique, suggesting the mechanism of their origin. The revealed chromosomal rearrangements generate additional diversity, opening the way toward massive loss of duplicated genes from a duplicated genome. Our findings suggest that the karyotype of M. lignano is in the early stage of genome diploidization after whole genome duplication, and further studies on M. lignano and closely related species can address many questions about karyotype evolution in animals.

10.
Sci Rep ; 7(1): 6066, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729552

RESUMO

The free-living flatworm Macrostomum lignano is a model organism for evolutionary and developmental biology studies. Recently, an unusual karyotypic diversity was revealed in this species. Specifically, worms are either 'normal' 2n = 8, or they are aneuploid with one or two additional large chromosome(s) (i.e. 2n = 9 or 2n = 10, respectively). Aneuploid worms did not show visible behavioral or morphological abnormalities and were successful in reproduction. In this study, we generated microdissected DNA probes from chromosome 1 (further called MLI1), chromosome 2 (MLI2), and a pair of similar-sized smaller chromosomes (MLI3, MLI4). FISH using these probes revealed that MLI1 consists of contiguous regions homologous to MLI2-MLI4, suggesting that MLI1 arose due to the whole genome duplication and subsequent fusion of one full chromosome set into one large metacentric chromosome. Therefore, one presumably full haploid genome was packed into MLI1, leading to hidden tetraploidy in the M. lignano genome. The study of Macrostomum sp. 8 - a sibling species of M. lignano - revealed that it usually has one additional pair of large chromosomes (2n = 10) showing a high homology to MLI1, thus suggesting hidden hexaploidy in its genome. Possible evolutionary scenarios for the emergence of the M. lignano and Macrostomum sp. 8 genomes are discussed.


Assuntos
Infecções por Cestoides/parasitologia , Evolução Molecular , Cariótipo , Turbelários/classificação , Turbelários/genética , Animais , Cromossomos , Hibridização in Situ Fluorescente
11.
Parasitol Int ; 66(4): 396-401, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27404484

RESUMO

Few existing studies have dealt with cytogenetics in trematodes, largely due to the attendant technical difficulty of chromosome preparation. We performed a comparative analysis of chromosomes in five opistorchiid species, including Opisthorchis felineus Rivolta, 1884, Opisthorchis viverrini Poirier, 1886, Clonorchis sinensis Cobbold, 1875, Metorchis xanthosomus Creplin 1846, and Metorchis bilis (Braun, 1790) Odening, 1962. For some of these species, no detailed morphometric description of their karyotypes has yet been published; for the karyotype of Metorchis bilis this is the first-ever description. We found that opisthorchiids, like other trematodes, are characterized by karyotypic conservatism (N=6-7) and karyotype asymmetry, although comparison of chromosome morphometric traits did reveal differences between the karyotypes of the species. Moreover, to address certain a methodological issue in trematode chromosome preparation, we analyzed how the source of chromosomal material (partenitae or mature flukes) and the chromosome preparation techniques used (air-drying and cell suspension methods) affected chromosome spreading and size, concluding that the most reliable comparative method involves comparing relative parameters (relative length, arm ratio, centromeric index) of chromosomes prepared using the same technique.


Assuntos
Cariótipo , Cariotipagem/métodos , Opisthorchidae/genética , Animais , Cromossomos/genética , Hibridização in Situ Fluorescente , Opisthorchidae/citologia , Especificidade da Espécie
12.
PLoS One ; 11(10): e0164915, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27755577

RESUMO

Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this species, previously suggested to have a karyotype with 2n = 8 and one pair of large and three pairs of small metacentric chromosomes. We performed cytogenetic analyses for chromosomes of one commonly used inbred line of M. lignano (called DV1) and uncovered unexpected chromosome number variation in the form of aneuploidies of the largest chromosomes. These results prompted us to perform karyotypic studies in individual specimens of this and other lines of M. lignano reared under laboratory conditions, as well as in freshly field-collected specimens from different natural populations. Our analyses revealed a high frequency of aneuploids and in some cases other numerical and structural chromosome abnormalities in laboratory-reared lines of M. lignano, and some cases of aneuploidy were also found in freshly field-collected specimens. Moreover, karyological analyses were performed in specimens of three further species: Macrostomum sp. 8 (a close relative of M. lignano), M. spirale and M. hystrix. Macrostomum sp. 8 showed a karyotype that was similar to that of M. lignano, with tetrasomy for its largest chromosome being the most common karyotype, while the other two species showed a simpler karyotype that is more typical of the genus Macrostomum. These findings suggest that M. lignano and Macrostomum sp. 8 can be used as new models for studying processes of partial genome duplication in genome evolution.


Assuntos
Cromossomos , Platelmintos/genética , Animais , Evolução Biológica , Análise Citogenética , Sondas de DNA/metabolismo , Hibridização in Situ Fluorescente , Cariótipo , Metáfase , Platelmintos/crescimento & desenvolvimento
13.
Zebrafish ; 12(2): 174-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25608108

RESUMO

Guppy X and Y chromosomes represent an early stage in sex chromosome divergence. Synapsis and recombination between X and Y chromosomes attract special attention because recombination suppression promotes their differentiation, but previous studies have given contradictory results. Linkage analysis indicated that recombination between X and Y was extremely rare (<10%) and occurred in the medial part of the Y chromosome, while cytological analysis demonstrated regular association between the distal ends of the X and Y at diakinesis. In this study, we examine pairing and recombination between X and Y chromosomes using immunolocalization of MLH1 to mark recombination nodules, and genomic in situ hybridization with a male DNA probe to identify the Y-specific heterochromatic region. Pairing between X and Y is initiated distally. Single crossovers were detected in 87% of XY synaptonemal complexes, most often in the distal region and less frequently in a median position indicating that end-to-end associations between X and Y are chiasmatic. Thus, we suggest that the very low frequency of recombination detected by linkage analysis in a previous study resulted from a lack of informative markers in distal regions.


Assuntos
Pareamento Cromossômico , Poecilia/genética , Recombinação Genética/genética , Cromossomos Sexuais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação da Expressão Gênica , Marcadores Genéticos , Cariótipo , Masculino , Proteína 1 Homóloga a MutL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Parasitol Int ; 61(1): 87-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21798365

RESUMO

In the present study karyotypes and chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus (Rivolta, 1884), O. viverrini (Poirier, 1886), Metorchis xanthosomus (Creplin, 1846), M. bilis (Braun, 1893), and Clonorchis sinensis (Cobbold, 1875)) were compared. Karyotypes of O. felineus, M. xanthosomus, M. bilis and C. sinensis consist of two pairs of large meta- and submetacentrics and five pairs of small chromosomes (2n = 14). The karyotype of O. viverrini is 2n = 12, which indicates a fusion of two chromosomes of opisthorchid ancestral karyotype. Analysis of mitotic and meiotic chromosomes was performed by heterologous in situ hybridization of microdissected DNA probes obtained from chromosomes 1 and 2 of O. felineus and chromosomes 1 and 2 of M. xanthosomus. Results of chromosome staining (C- and AgNOR-banding) and FISH of telomeric probes and ribosomal DNA probe on opisthorchid chromosomes were used for chromosome comparison. Data on chromosome number in opisthorchid species were also discussed.


Assuntos
Genes de Helmintos , Cariótipo , Opisthorchidae/genética , Animais , Bandeamento Cromossômico , Coloração Cromossômica , Genoma , Hibridização in Situ Fluorescente , Meiose , Microdissecção , Mitose , Região Organizadora do Nucléolo/química , Especificidade da Espécie
15.
Parasitol Int ; 61(1): 81-3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21708281

RESUMO

The analysis of telomere repeat distribution in chromosomes of five opisthorchid species (Opisthorchis felineus (Rivolta, 1884), Opisthorchis viverrini (Poirier, 1886), Metorchis xanthosomus (Creplin, 1846), Metorchis bilis (Braun, 1890), Clonorchis sinensis (Cobbold, 1875)) was performed with fluorescent in situ hybridization (FISH) of labeled (TTAGGG)n DNA-probe and PNA telomere probe on mitotic and meiotic chromosomes of these species. It was shown that chromosome telomeres of all studied species contain large clusters of (TTAGGG)n telomeric repeats. Interstitial clusters of the (TTAGGG)n repeats have not been revealed in the chromosomes of any studied species even when FISH of PNA telomere probe on pachytene chromosomes was performed. Furthermore interstitial clusters of the (TTAGGG)n repeats have not been detected in the chromosomes of O. viverrini, one of chromosomes of this species is the result of a fusion of two ancestral opisthorchid chromosomes.


Assuntos
DNA de Helmintos/análise , Opisthorchidae/genética , Telômero/genética , Animais , DNA de Helmintos/genética , Hibridização in Situ Fluorescente , Cariótipo , Meiose , Mitose , Opisthorchidae/classificação , Opisthorchidae/citologia , Ácidos Nucleicos Peptídicos/análise , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie , Telômero/química , Infecções por Trematódeos/parasitologia
16.
Parasitol Int ; 61(1): 84-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21791251

RESUMO

Genomes of opisthorchid species are characterized by small size, suggesting a reduced amount of repetitive DNA in their genomes. Distribution of repetitive DNA sequences in the chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus 2n = 14 (Rivolta, 1884), Opisthorchis viverrini 2n = 12 (Poirier, 1886), Metorchis xanthosomus 2n = 14 (Creplin, 1846), Metorchis bilis 2n = 14 (Braun, 1890), Clonorchis sinensis 2n = 14 (Cobbold, 1875)) was studied with C- and AgNOR-banding, generation of microdissected DNA probes from individual chromosomes and fluorescent in situ hybridization on mitotic and meiotic chromosomes. Small-sized C-bands were discovered in pericentric regions of chromosomes. Ag-NOR staining of opisthorchid chromosomes and FISH with ribosomal DNA probe showed that karyotypes of all studied species were characterized by the only nucleolus organizer region in one of small chromosomes. The generation of DNA probes from chromosomes 1 and 2 of O. felineus and M. xanthosomus was performed with chromosome microdissection followed by DOP-PCR. FISH of obtained microdissected DNA probes on chromosomes of these species revealed chromosome specific DNA repeats in pericentric C-bands. It was also shown that microdissected DNA probes generated from chromosomes could be used as the Whole Chromosome Painting Probes without suppression of repetitive DNA hybridization. Chromosome painting using microdissected chromosome specific DNA probes showed the overall repeat distribution in opisthorchid chromosomes.


Assuntos
DNA de Helmintos/análise , Opisthorchidae/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Bandeamento Cromossômico , Coloração Cromossômica , Cromossomos/genética , Sondas de DNA/análise , Sondas de DNA/ultraestrutura , DNA Ribossômico/análise , DNA Ribossômico/ultraestrutura , Hibridização in Situ Fluorescente , Cariótipo , Meiose , Microdissecção , Mitose , Região Organizadora do Nucléolo/ultraestrutura , Opisthorchidae/citologia , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...